Gaussian and non-Gaussian random fields associated with Markov processes
نویسندگان
چکیده
منابع مشابه
Spatial prediction with mobile sensor networks using Gaussian processes with built-in Gaussian Markov random fields
In this paper, a new class of Gaussian processes is proposed for resource-constrained mobile sensor networks. Such a Gaussian process builds on a GMRFwith respect to a proximity graph over a surveillance region. The main advantages of using this class of Gaussian processes over standard Gaussian processes defined by mean and covariance functions are its numerical efficiency and scalability due ...
متن کاملApproximating Hidden Gaussian Markov Random Fields
This paper discusses how to construct approximations to a unimodal hidden Gaussian Markov random field on a graph of dimensionnwhen the likelihood consists of mutually independent data. We demonstrate that a class of non-Gaussian approximations can be constructed for a wide range of likelihood models. They have the appealing properties that exact samples can be drawn from them, the normalisatio...
متن کاملSubset Selection for Gaussian Markov Random Fields
Given a Gaussian Markov random field, we consider the problem of selecting a subset of variables to observe which minimizes the total expected squared prediction error of the unobserved variables. We first show that finding an exact solution is NP-hard even for a restricted class of Gaussian Markov random fields, called Gaussian free fields, which arise in semi-supervised learning and computer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1984
ISSN: 0022-1236
DOI: 10.1016/0022-1236(84)90004-1